Verifying the Steane code with Quantomatic

نویسندگان

  • Ross Duncan
  • Maxime Lucas
چکیده

In this paper we give a partially mechanized proof of the correctness of Steane’s 7-qubit error correcting code, using the tool Quantomatic. To the best of our knowledge, this represents the largest and most complicated verification task yet carried out using Quantomatic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verifying the Smallest Interesting Colour Code with Quantomatic

Error correction will form a crucial layer in the software stack of any realistic quantum computer for the foreseeable future. Since the implementation of any error correction scheme will depend on the details of the actual hardware, it is generally expected that error correction will be added to a quantum program late in the compilation process (see, for example [18]). In other words, the faul...

متن کامل

Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code

The seven-qubit quantum error-correcting code originally proposed by Steane is one of the best known quantum codes. The Steane code has a desirable property that most basic operations can be performed easily in a fault-tolerant manner. A major obstacle to fault-tolerant quantum computation with the Steane code is fault-tolerant preparation of encoded states, which requires large computational r...

متن کامل

Quantum Error Correcting Codes

This thesis deals with quantum error correcting codes. In first two chapters necessary introduction to quantum computation and classical error correction is presented. Previous results on construction of quantum error correcting codes are presented in the third and fourth chapter. Mainly Calderbank-Steane-Shor (CSS) codes and stabilizer codes are discussed together with the introduction to codi...

متن کامل

Encoding !-tensors as !-graphs with neighbourhood orders

Diagrammatic reasoning using string diagrams provides an intuitive language for reasoning about morphisms in a symmetric monoidal category. To allow working with infinite families of string diagrams, !-graphs were introduced as a method to mark repeated structure inside a diagram. This led to !-graphs being implemented in the diagrammatic proof assistant Quantomatic. Having a partially automate...

متن کامل

Enlargement of Calderbank-Shor-Steane quantum codes

It is shown that a classical error correcting code C = [n, k, d] which contains its dual, C⊥ ⊆ C, and which can be enlarged to C ′ = [n, k′ > k + 1, d′], can be converted into a quantum code of parameters [[n, k + k′ − n,min(d, d3d′/2e)]]. This is a generalisation of a previous construction, it enables many new codes of good efficiency to be discovered. Examples based on classical Bose Chaudhur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013